Exercise 60

At what point on the curve $y=1+2 e^{x}-3 x$ is the tangent line parallel to the line $3 x-y=5$? Illustrate by graphing the curve and both lines.

Solution

Writing the given equation of the line as

$$
y=3 x-5,
$$

we see that it has a slope of 3 . The aim is to take the derivative of the given function and find where it's equal to 3 .

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(1+2 e^{x}-3 x\right) \\
& =\frac{d}{d x}(1)+\frac{d}{d x}\left(2 e^{x}\right)-\frac{d}{d x}(3 x) \\
& =\frac{d}{d x}(1)+2 \frac{d}{d x}\left(e^{x}\right)-3 \frac{d}{d x}(x) \\
& =(0)+2\left(e^{x}\right)-3(1) \\
& =2 e^{x}-3
\end{aligned}
$$

Set this equal to 3 and solve for x.

$$
\begin{gathered}
2 e^{x}-3=3 \\
2 e^{x}=6 \\
e^{x}=3 \\
x=\ln 3 \approx 1.099
\end{gathered}
$$

Plug this value of x into the given function to get the corresponding y-value on the curve.

$$
y(\ln 3)=1+2 e^{\ln 3}-3(\ln 3)=7-3 \ln 3 \approx 3.704 \quad \Rightarrow \quad(\ln 3,7-3 \ln 3)
$$

Finally, determine the equation of the line with slope 3 that goes through the point $(\ln 3,7-3 \ln 3)$.

$$
y-(7-3 \ln 3)=3(x-\ln 3)
$$

Below is a plot of the given curve, the given line, and this tangent line parallel to the given line.

